[Ca2+]i elevations detected by BK channels during Ca2+ influx and muscarine-mediated release of Ca2+ from intracellular stores in rat chromaffin cells.

نویسندگان

  • M Prakriya
  • C R Solaro
  • C J Lingle
چکیده

Submembrane [Ca2+]i changes were examined in rat chromaffin cells by monitoring the activity of an endogenous Ca(2+)-dependent protein: the large conductance Ca(2+)-and voltage-activated K+ channel (also known as the BK channel). The Ca2+ and voltage dependence of BK current inactivation and conductance were calibrated first by using defined [Ca2+]i salines. This information was used to examine submembrane [Ca2+]i elevations arising out of Ca2+ influx and muscarine-mediated release of Ca2+ from intracellular stores. During Ca2+ influx, some BK channels are exposed to [Ca2+]i of at least 60 microM. However, the distribution of this [Ca2+]i elevation is highly nonuniform so that the average [Ca2+]i detected when all BK channels are activated is only approximately 10 microM. Intracellular dialysis with 1 mM or higher EGTA spares only the BK channels activated by the highest [Ca2+]i during influx, whereas dialysis with 1 mM or higher BAPTA blocks activation of all BK channels. Submembrane [Ca2+]i elevations fall rapidly after termination of short (5 msec) Ca2+ influx steps but persist above 1 microM for several hundred milliseconds after termination of long (200 msec) influx steps. In contrast to influx, the submembrane [Ca2+]i elevations produced by release of intracellular Ca2+ by muscarinic actetylcholine receptor (mAChR) activation are much more uniform and reach peak levels of 3-5 microM. Our results suggest that during normal action potential activity only 10-20% of BK channels in each chromaffin cell see sufficient [Ca2+]i to be activated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells.

BK channel activation by brief depolarizations requires Ca2+ influx through L- and Q-type Ca2+ channels in rat chromaffin cells. Ca2+- and voltage-dependent BK-type K+ channels contribute to action potential repolarization in rat adrenal chromaffin cells. Here we characterize the Ca2+ currents expressed in these cells and identify the Ca2+ channel subtypes that gate the activation of BK channel...

متن کامل

Intracellular calcium and cell death during ischemia in neonatal rat white matter astrocytes in situ.

The major pathological correlate of cerebral palsy is ischemic injury of CNS white matter. Histological studies show early injury of glial cells and axons. To investigate glial cell injury, I monitored intracellular Ca2+ and cell viability in fura-2-loaded neonatal rat white matter glial cells during ischemia. Fura-2 fixation combined with immunohistochemistry revealed that fura-2-loaded cells ...

متن کامل

Cholinergic stimulation of inositol phosphate formation in bovine adrenal chromaffin cells: distinct nicotinic and muscarinic mechanisms.

The ability of cholinergic agonists to activate phospholipase C in bovine adrenal chromaffin cells was examined by assaying the production of inositol phosphates in cells prelabeled with [3H]inositol. We found that both nicotinic and muscarinic agonists increased the accumulation of [3H]inositol phosphates (mainly inositol monophosphate) and that the effects mediated by the two types of recepto...

متن کامل

P30: Effects of Hemin on Ca2+Influx in Neurons of C57BL/6 Mouse Brain

Excitotoxicity results in a significant increase in Ca2+ influx; essentially from open N-Methyl-D-aspartate receptors (NMDARs) channels that cause a secondary rise in the intracellular Ca2+ concentration. It is correlated with neuronal death induced by Ca2+ overload. Dysfunction of NMDARs is associated with excitotoxic neuronal death in neurodegenerative disorders. In this study, the effects of...

متن کامل

Confocal imaging of Ca2+ signaling in cultured rat retinal pigment epithelial cells during mechanical and pharmacologic stimulation.

PURPOSE The purpose of this study was to investigate the mechanism of Ca2+ signaling in rat retinal pigment epithelial (RPE) cells during mechanical and pharmacologic stimulation and to analyze the pathway of intercellular communication during mechanical stimulation. METHODS Subconfluent monolayers of RPE cells cultured for 3 to 7 days after isolation from 5- to 8-day-old Long Evans rats were...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 16 14  شماره 

صفحات  -

تاریخ انتشار 1996